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The transport processes in dilute neutral gases are studied by using the kinetic equation with a collision
relaxation model that meets all conservation requirements. The kinetic equation is solved keeping the whole
anisotropic part of the distribution function with the use of the continued fractions. The conservative laws of
the collision operator are taken into account with the projection operator techniques. The generalized heat flux
and stress tensor are calculated in the linear approximation, as functions of the lower moments, i.e., the density,
the flow velocity and the temperature. The results obtained are valid for arbitrary collision frequency v with the
respect to kv, and the characteristic frequency w, where k™! is the characteristic length scale of the system and
v, is the thermal velocity. The transport coefficients constitute accurate closure relations for the generalized
hydrodynamic equations. An application to the dispersion and the attenuation of sound waves in the whole
collisionality regime is presented. The results obtained are in very good agreement with the experimental data.
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I. INTRODUCTION

The study of the spatial and temporal nonlocal transport
effects in neutral gases is motivated by fundamental prob-
lems of statistical physics [1] such as the connection between
generalized versions of hydrodynamics and generalizations
of Grad’s theory [2], as well as by practical problems such as
the dispersive properties of sound waves, the properties of
shock structures in weakly collisional gases and the spectral
response of fluids with the use of the scattering of the light
and the neutrons by fluid disturbances.

Numerous studies of physical phenomena in neutral gases
are based on the hydrodynamical models. Validity conditions
of these hydrodynamical equations are often not fulfilled,
particularly when the inhomogeneity scale length L and the
characteristic frequency w of the physical phenomena is
comparable respectively to the particle mean-free path A and
to the collision frequency v. The classical diffusionlike equa-
tions for the momentum and energy transfer (the so-called
hydrodynamic regime) are no longer correct and spatial and
temporal nonlocal effects should be also accounted for under
these conditions.

In the literature several works have been devoted to the
derivation of the generalized Boltzmann and hydrodynamic
equations. By generalized equations, we mean that the trans-
port coefficients in the Fourier space depend on the fre-
quency o and the wave number k=2/L. Although this
physical problem is an old problem, it remains in our knowl-
edge still open. Several models are proposed to derive ki-
netic and hydrodynamic generalized equations for dilute and
dense gases. Hereafter we present a brief review for these
papers.

First we review the papers related to the structure factor
which allows us to investigate the effects of the molecular
dynamics on the transport properties. Among the pioneering
work in this field, Yip and Nelkin [3] have computed the
space and time-dependent density correlation function G(r,1)
[the measured quantity in light and neutron scattering experi-
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ments is its Fourier transform S(k,w)] in dilute fluids by
using the Bhatnagar-Gross-Krook (BGK) kinetic model [4].
They have shown in particular that in the Knudsen regime
(weakly collisional gas) the hydrodynamic description is no
longer valid. In Ref. [5], the correlation function for a clas-
sical dense fluid is calculated from the linearized Vlasov
equation. The effective interatomic potential is taken into
account and the results obtained show similarity with inelas-
tic neutron scattering experiments. In the seventeen’s, Fur-
tado, Mazenko, and Yip [6] have improved the kinetic model
based on the Boltzmann-Enskog equation to compute in a
dense hard-sphere fluid, the dynamic structure factor S (lg , ).
In particular, they approximate the collision operator in the
Enskog equation and assume a k-dependent hard-sphere di-
ameter. The results obtained are in good agreement with the
neutron inelastic scattering measurements. A similar work
has been reported in Ref. [7] where the collision operator is
approximated by the BGK model [4]. In Ref. [8] the neutron
scattering function for hard sphere have been computed by
using molecular dynamics simulation. It has been shown that
the Enskog kinetic and hydrodynamic theories give qualita-
tively accurate results in describing the thermal fluctuations
as long as the scale length L is greater than the particle
mean-free path \. Using standard projection operator tech-
niques Kirkpatrick [9] demonstrated the connection between
the work of Refs. [7,8].

On the other hand more recently some papers have been
devoted to the calculation of the generalized hydrodynamic
equations. Velasco and Garcia Colin [10] have proposed a
model of generalized transport coefficients for dilute gases
using the Grad’s method [2] for solving the Boltzmann equa-
tion up to 26 moments. The linearized transport coefficients
for weakly nonlocal regime are calculated. In Ref. [11], the
model of Ref. [10] is extended to moderately dense gases
and the Enskog equation is solved with the use of the 13-
moment Grad method. The calculation is developed up to the
second order in the density expansion.

Moreover, Alexeev [12] proposed a generalized Boltz-
mann equation based on the BBGKY-hierarchy taking into
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account three time-scales, namely the mean time of particle
interaction and the usual collision mean-free time and typical
hydrodynamic time. The three generalized hydrodynamic
equations (conservation of mass, momentum and energy) are
established. These equations could be used to study the tur-
bulence theory on the Kolmogorov scale.

In Ref. [13], a generalized macroscopic equation model is
derived from the Boltzmann equation with the BGK collision
operator. The solution of the kinetic equation is obtained
using a modified Chapman-Enskog [14] expansion. The dis-
tribution function is expanded up to the first order with re-
spect to the small parameter € ~\/L and the solvability con-
ditions are not applied at each order of the expansion. This
procedure yields results valid in weakly nonlocal range.

In this work we calculate from the Boltzmann equation
the generalized linear transport coefficients in dilute neutral
gases for arbitrary collisionality parameter % and for arbi-
trary normalized phase velocity kiv,’ where v,= \/; is the ther-
mal velocity, T is the temperature in energy units (used
throughout this work), and m is the particle mass. In the
literature, the usual approach to solve the Boltzmann equa-
tion is the Chapman-Enskog [14] method. This method is
based on the expansion of the kinetic equation on the colli-
sionality parameters A/L and v/w. The first term of the ex-
pansion is the local Maxwellian. To solve the kinetic equa-
tion, the expansion is truncated at a given order. This
method, robust to describe systems very close to the thermo-
dynamic equilibrium, breaks down to solve weakly colli-
sional systems. The main argument to explain the failure of
these methods is that the collisions are not enabled to ensure
the Maxwellianization of the isotropic part of the distribution
function. The isotropic part has to be treated on equal footing
with the other terms of the expansion.

In the present work we present an alternative approach to
solve the Boltzmann equation keeping the whole anisotropic
part of the distribution function with the use of the continued
fractions [15] and the projection operators [16] to ensure the
conservative properties of the collision operator. In Sec. II
we present the kinetic model. Section III is devoted to the
solution of the Boltzmann equation and to the computation
of the generalized transport coefficients. An application de-
voted to the sound waves in neutral gases is presented in Sec.
IV. Finally we give in a last section a discussion and a sum-
mary of this work.

II. EQUATIONS OF THE MODEL

The starting point of this work is the Boltzmann equation
for a monatomic particle gas

e, - s _
PP PE =) (v

where f,(v,r,1) is the distribution function of the particle gas
and the right-hand side is the collision operator [or the time
rate of change of fg(lj ,7,1) due to collisions]. The other vari-
ables have their usual meaning. An infinite system of mo-
ment equations can be obtained by taking different velocity
moments of the Boltzmann equation. The turbulence in the
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system is assumed negligible and the correlations of waves
are not taken into account. For weakly turbulent systems for
instance, the quasilinear theory could be applicable. The un-
truncated hierarchy of such equations is completely equiva-
lent to the Boltzmann equation and the all kinetic informa-
tion is not lost in such a hierarchy. Usually, the infinite
system is truncated to the first three equations, for the density

n(r,t), the flow velocity V(r,t), and the temperature T(r,1).
The higher order moments, namely the heat flux g(r,7) and
the stress tensor Hij(r*, t) in one-constituent gases, computed
from the kinetic theory in terms of the lower moments, con-
stitute the closure relations for these fluid equations. It is
obvious that the validity range of the closure relations im-
poses the validity range of the fluid model. The resulting fluid
equations are the density, the momentum, and the energy
transport equations

on  dnV;
T4 T2, @)
ot (9)(,-
o i LD Lally
ot " ox; nm  0x; nm ox;

d (nmV* 3nT J nmV?*  5nT
- e + —— V,+H,JV,+qj

Lo
g\ 2 2 ) o\ 2 2
=0, (4)
where
- 5 — V)? .
I,(7.0) = m j ((v,-— V- vy - 25 @,)fgdu,
(5)
and
G710 = f %m(ﬁ— V(G = V)fdo. (6)

We note that Egs. (2)-(4) conserve respectively the density,
the momentum, and the energy of the particles and they do
not involve collisional terms, given that, the following con-
servative laws have to be fulfilled

f C[f,(0)]dv =0, (7)
f moC[f,(0)]dv =0, (8)
f %msz[fg(J)]dJ =0. 9)

In the following, it is more convenient to rewrite Eq. (1)

using the random velocity, v’ =v—V. For this, one computes

the total time derivative of f,(v',7,) and uses the free force

: : dv' _dv .
approximation, ~-=—"-, obtaining
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In this paper we shall concentrate on situations where the
gas is near thermal equilibrium constituted by a reference
thermal (global) state defined by a temperature T}, a density

ny and no mean velocity V=0, and a perturbed state defined
by the hydrodynamic variables, n(r,t), V(r,t), and T(r,?). In
addition, for the sake of simplicity, we assume that all the
inhomogeneities are in the x direction, i.e., n=n(x,1), T

=T(x,t), and V=V(x,1)x.

The basic equation of our model is the perturbed Boltz-
mann equation with respect to the global equilibrium. For
this purpose we separate the distribution function into a glo-
bal Maxwellian and a perturbed distribution function, i.e.,
fo@"x,0)=Fy(v".ng,Ty)+f(®" ,x,1). The collision operator
is modeled by a relaxation operator [4] (or the BGK opera-
tor) with a constant collision frequency v, however we con-
sider that this operator relaxes the distribution function to-
wards a local perturbed Maxwellian. Thus its expression
reads

C(f) = v[fulv'.x.0) - f0 x,1)] (11)
where
(o xt) = n(x,z) ( v_’2> . T(x,1) <U_'2 é)
Sulv’x,0) = o Mo€XP thz T, Mo 20,2 )
vr2>
X -— 12
eXp( 27 (12)

is the perturbed Maxwellian, wo=nq/ (271'1)3)3/2 and v,
=(Ty/m)'? is the background thermal velocity. The hypoth-
esis of a constant collision frequency is required to fulfil the
conservative properties (7) and (9). We will see in Sec. 1V,
devoted to computation of the dispersion relation of sound
waves, that the collision frequency v can be estimated by
comparison with experimental data in the collisional range
(N/L<1). Using these approximations the perturbed Boltz-
mann equation is readily obtained

o, of

ot ox ox

dFy IV IFy dV dFy,
_— -V,
at v, dx dv,

=v(fu—1),
(13)

where for clarity the “prime” in the random velocity is re-
moved. Due to the axial symmetry of the problem along the
X axis, in the velocity space the distribution function depends
on the coordinates (v,u), ie., f(U,x,t)=f(v,u,x,t), where
p=cos 0=v./v. To solve Eq. (13), first we perform its Fou-
rier transform (x < k, 7+ w), after that, we expand the distri-
bution function and Eq. (13) on the Legendre polynomial
basis [ P,(w)], obtaining
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f(@,w,k) = 2 Po(w)fu(y,@,k), (14)
n=0
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(18)

where y=mv?/2T, and the notation “~” means that the cor-
responding quantities are written in the Fourier space. To
derive Egs. (15)—(18), we have used the recursive formula

[17]

n

P, (u) = ml’m(u)

n+1

+ ml’m(#), (19)

to compute explicitly the second term in the left-hand side of
Eq. (13).

In Ref. [16], the approach presented to solve the kinetic
equations is based on the projection operator P and its or-
thogonal complement, Q. In particular, the authors have cal-
culated explicitly the expressions of these operators for the
relaxation collision operator (11). We give in Appendix A, a
simplified presentation of these mathematical techniques and
a summary of the calculation of the projectors P and Q as-
sociated to the relaxation operator. Equation (15) which ac-
counts for the collisional properties (7) and (9) is obtained by
multiplying it by the operator Q
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where I'(x) is the Euler function and where we have used the
notation, M™ = [y"f,dy.

Now we can go a step further and use the mathematical
results derived in Ref. [15] to solve the infinite set of Eq.

(18). We can see that the component fz is expressed in terms

of f} and ﬂ, then, f} is expressed in terms of ﬂ and fs, and
so on. The solution of this algebraic system of equations can
be found with the use of the continued fractions [15]. It
results the expression

fi=F\fy. (21)

Here F, (and F, F, which will be defined in the next sec-
tion) are infinite continued fractions defined by following
recursive formula calculated in Ref. [15]

(n+1)? -l
AT 200y F | (22)

where F, is an infinite continued fraction of order n, and it
incorporates the contributions from all the Legendre modes
with n>1. We should note that expression (21) is the exact
solution of the infinite set of Eq. (18). We pointed out that
the techniques of the continued fractions were previously
used in the transport theory. For instance, Mori [18] and
Nagano et al. [19] have reported a general development of
the kernel of a generalized Langevin equation in terms of a
continued fraction expansion and in Refs. [20,21], the diffu-
sion coefficient, the heat conductivity, and the shear viscosity
are expanded on the continued fractions with respect to the
frequency and the wave vector.

Equations (16), (17), (20), and (21) constitute the basic
equations of this work. They correspond to a set of linear

F,=|-io+v+

algebraic equations for the functions fo —]73 with source terms
expressed with respect to the generalized forces: the gradi-
ents of density and temperature, and the flow velocity. They
are exactly equivalent to the perturbed Boltzmann equation
(13) coupled to the conservative properties (7)—(9). There-
fore these equations are valid in the most general ordering,
corresponding to arbitrary values of the relevant parameters

III. GENERALIZED TRANSPORT COEFFICIENTS

To proceed further, we have to solve Egs. (16), (17), (20),
and (21) for the perturbed distribution functions fy—f3. From
Egs. (16), (17), and (21) we deduce the first and the second
anisotropic functions that we need to compute the transport
coefficients
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Substituting expression (23) into the isotropic equation (20),
we readily obtain the expression of the symmetric distribu-
tion function

fo=(v—iw)Fofy - _leOyFoFleXP( V)ikV

16 _
+ Ekzv,z,uoyzFoFleexp(— y)ikV

—

2V2 5
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Then from Egs. (23)—(25), the two first anisotropies of the

distribution function can be written as

- 2 ~ 2
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3157
16 3
- \—kzv 2iky y?FoF  Faexp(— y)(— “pm! +M%>.
o157 2

27
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We can now compute from Egs. (26) and (27) the desired
generalized transport expressions
87
Gu=—Tmv; M} (28)
V3
for the x component of the heat flux and

_ 16m2
= mvfM%/2 (29)
345

XX

for the x-x component of the stress tensor. From Egs. (5) and

(6), we can see that the remaining components of g; and l:[ij
vanish. The explicit expressions of Egs. (28) and (29) are
relegated for the sake of clarity in Appendix B. We have
found that the heat flux involves linear combination of Fou-
rier components of the temperature gradient (Vf)k
=ikT(w,k), the perturbed flow velocity, V(w, k), whereas the
stress tensor involves the combination of the perturbed tem-
perature T(w,k) and the spatial derivative of the flow veloc-

ity (%) =ik¥(w. k). ic.

~ ik T -
qx(w,k) =— KTnQTOvt—— - aVnoTov, (30)
k| T,
_ - ik V
I, (w,k) == amyT — unyTy——. (31)
|k| U;

In Egs. (30) and (31) the dimensionless transport coeffi-
cients are given in Appendix B through Egs. (B4)-(B7),
where K; is the thermal conductivity, ay is the convective
heat flux coefficient, a is the temperature anisotropy coef-
ficient, and w is the viscosity coefficient. Notice that the
coefficients ay and a7 have no counterparts in the local re-
lations, i.e., they vanish in the limit v— 0.

Now we present the numerical computations of the trans-
port coefficients. As an illustration we give in Figs. 1-3 the
real and imaginary parts of these coefficients as functions of
the normalized phase velocity gZT(ZIw' We can see that the
transport coefficients decrease with increasing parameter -
and they tend to zero for £&— . In the limit of strong colli-
sionality, the Taylor expansion of the continued fractions
with respect to the small parameters, kjv/ ~ “;’ ~g<k 1, leads to
F,~(1+i%). Hence, the integrals Y/, = [y"Fy i F)dy, de-
fined in Appendix B become Euler functions and we can
easily recover at the lowest order on %, the collisional coef-
ficients, KT=%&VU’, =%&Vv', and ay=ar=0. On the other
hand, for finite values of w/v and for k_’;,<<1» the transport
coefficients due to the nonlocal effects, present nonvanishing
asymptotic behavior. We have also checked that the general-
ized Onsager symmetry, a;=ay is fulfilled. The nonlocal
quantities (30) and (31) can be expressed in terms of convo-
lution products in the spatiotemporal space, involving the
temperature gradient and the fluid velocity, and kernels de-
fined by the set of nonlocal transport coefficients (B4)—(B7).

Rewritten in the (7,x) space, the transport coefficients can
be used as closure relations for the hydrodynamic equations
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FIG. 1. Normalized thermal conductivity K7 as a function of the
normalized phase velocity &= Tu/:u, for different collisionality param-
eter ~=0.1 (dashed curve), Z=1 (dotted line), and -=10 (solid
line). The panels (a) and (b) correspond respectively to the real and
imaginary part of K.

(2)-(4). Rigorously, these relations are valid to close linear
hydrodynamic equations. However it is well known that the
linear transport coefficients can be still used to close nonlin-
ear hydrodynamic equations and a discussion on this ap-
proximation is given in Sec. V. We should emphasize that the
closure relations (30) and (31) are valid for arbitrary colli-
sionality and arbitrary characteristic time and space scales.

IV. APPLICATION TO ULTRASONIC WAVES

It is known that, when the frequency of a sound wave
becomes comparable with the collision frequency of par-
ticles, the Chapman-Enskog and 13-moment Grad’s methods
give poor accounts of the dispersion relation. In the literature
several theoretical models [12,13,22-26] have been reported
to calculate the dispersion relation of sound waves. In Ref.
[22], Sirovich and Thurber have computed the dispersion
relation of sound waves, using the hard-sphere model. The
comparison with the experimental measurements has shown
that their hydrodynamic model is not able to capture the
propagation of the sound mode in the high-Knudsen number
regime. In Ref. [13], the fluid equation model developed by
the authors was found to give good agreement with the ex-
perimental results only for the phase velocity of the sound
waves. Further generalized hydrodynamic models [12,24,25]
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FIG. 2. Normalized temperature anisotropy coefficient ar as a
function of the normalized phase velocity §=ﬁ for different col-
lisionality parameter —=0.1 (dashed curve), ~=1 (dotted line), and
£=10 (solid line). The panels (a) and (b) correspond respectively to
the real and imaginary part of a7

have been also reported in the literature. To test the accuracy
of these models, applications to the propagation of sound
waves are presented and the results obtained give poor agree-
ments with the experimental data [27-29] in the weakly col-
lisional range. To our knowledge the more accurate results
derived in the literature concerning the attenuation and the
dispersion of sound waves in weakly collisional gases are
due to Sukhorukov and Stubbe [23] and Marques [26].
Sukhorukov and Stubbe have proposed a kinetic model
based on the Boltzmann equation with a collision relaxation
model derived in Ref. [30]. They treated the problem of
sound waves generated by an oscillating boundary by fitting
the interval (x,—x;) used in the experiments [28], and they
found an almost good agreement with the experimental data.
Marques proposed a new extended kinetic description for
monatomic gases that is compatible with Grad’s 35-moment
approximation for monatomic gases of Maxwellian particles,
i.e., the interaction forces vary as 1/|r]>. The kinetic model is
based on the Boltzmann equation with a relaxation collision
operator C(f)=-o(f-f,), where o is an effective collision
frequency, f,=fy(A+Av;+A;v0;+A000+AjV V)
is a reference distribution function, and A, A, A Ao and
Ajju» are space and time-dependent coefficients. The theoret-
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FIG. 3. Normalized viscosity coefficient u as a function of the
normalized phase velocity &= ﬁ for different collisionality param-

eter ==0.1 (dashed curve), =1 (dotted line), and ~=10 (solid
line). The panels (a) and (b) correspond respectively to the real and
imaginary part of u.

ical predictions are in very good agreement with the experi-
mental data [27-29]. The most important question in the use
of the moment method is, how many moments are needed to
describe the physics of a problem accurately, in the sense
that the moment equations give a result close to a solution of
the Boltzmann equation. For this purpose Marques has also
reported results given by the 13-moment and 20-moment ap-
proximations. Although these approximations give good
agreement with experimental data in the range, r> 1, where
r is the rarefaction parameter, they fail to reproduce the ex-
perimental data in the weakly collisional range, r< 1. This,
has shown that for r<1, it is necessary to take into account
more kinetic effects and they are correctly accounted for by
the 35-moment method. We note also that more recently, the
kinetic model of Marques was generalized to two-fluid hy-
drodynamic by Fernandes and Marques in Ref. [31], to study
the sound wave properties in binary mixture.

In this section we use the generalized fluid equations de-
rived in the present theory to compute the dispersion relation
of free sound waves in the whole collisionality range. To
calculate the dispersion relation of a sound wave, we start
from Egs. (2)—(4) linearized with respect to the global equi-
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FIG. 4. Wave number (solid circles) k,/kq normalized to the
collisional value, as a function of v/w. The experimental data of
Meyer and Sessler (open circles) are represented as a function of r
(the inverse of the Knudsen number). The dotted curve corresponds
to the fluid limit.

librium. In the Fourier space (x<«k,f« w), they read

— iwit(w,k) + iknyV(w,k) =0, (32)

—iwV(w,k) = — iklnyT(w,k) + Tyii(w, k) ingm

—ikIT, (w,k)/ngm, (33)

3. =~ 5 ~
- le[noT(w,k) + Toﬁ((l),k)] =—- lk‘qw)L - lkil’loT()V(a),k) .

(34)

The set of equations (32)—(34) and (B4)-(B7) provides a
self-consistent hybrid fluid/kinetic description of the hydro-
dynamic perturbations in monatomic neutral gases.

The determinant of the algebraic Egs. (32)—(34) gives the
desired dispersion relation for sound waves in neutral gases

o’ =T (wlkv,, vio)k*v?, (35)

where

2
5(1 - av)(l - CYT)

2k
1+i>—" =Ky
w Vv

I'=1+

- (36)
14

is the polytropic coefficient. To solve numerically the disper-
sion relation (35), we proceed as follows: the integrals Y, ’

(see Appendix B) involved in the transport coefficients KT,
ay, ar, and p are computed with standard numerical meth-
ods and the polytropic coefficient I", is deduced. For each
value of =, the function F( V) is ﬁtted very accurately by
using the ratlo of polynomials, X7~ ,1(kv) 1207 12b ( ) .
Then, Eq. (35) is solved for a real frequency  and a com-
plex wave number, k=k,+ik;, since the spatial evolution
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FIG. 5. Normalized spatial damping rate (solid circles) k;/k, as
a function of v/w. The experimental data of Meyer and Sessler
(open circles) are represented as a function of r (the inverse of the
Knudsen number). The dotted curve corresponds to the fluid limit.

problem is of great relevance for experiments [27-29]. The
numerical results obtained for k, and k; are displayed respec-
tively in Figs. 4 and 5.

As a benchmark test for our theoretical model we first

consider the limit of strong collisions, i.e., — ~~ ~¢ << 1.In
this limit we easily deduce at the lowest order on - F—-

V’

—i“’(3+ 190k U’) Solving iteratively Eq. (35) we obtain the
dispersion relation, (k,/ko)*=1 and k;/ky=% (dotted curves
in Figs. 4 and 5) where ky= V/jﬂ is the colhswnal wave
number (normalization used in Ref. [28]). The results agree
well with the experimental values for a normalized collision
frequency comparable to the experimental parameter r (the
inverse of the Knudsen number) of Meyer and Sessler, i.e.,
v/w=r. As shown in Figs. 4 and 5, the departure from the
fluid theory corresponding to the onset of the kinetic effects,
becomes significant when roughly i<5. In this case the
isotropic function f; is not close to the perturbed Maxwellian
since the thermal-diffusion time becomes comparable to the
hydrodynamic time. The transport coefficients turn out to be
nonlocal, i.e., they depend in the Fourier space on the vari-
ables w and k. Since the particles responsible of the transport
(the heat-carrying particles for the heat flux for instance)
cannot thermalize instantaneously with the thermal popula-
tion, it results in a reduction of the dissipative transport co-
efficients and therefore a reduction of the damping rate with
respect to the collisional value.

We should expect that as the frequency collision is re-
duced, the wave number tends to zero (no propagation) and
the energy of the sound wave could not be dissipated in the
gas (k;—0). In contrast, the experimental data show that the
spatial damping rate diminishes slightly from ==0.6 and

k; @ .
tends to a constant value % =025 for £<0.1. Correlatively
in the weakly collisional range, the wave number remains
constant and equal to k_n ~().5. This behavior obviously could

not be explained by the use of the collision mechanisms
which play an insignificant role in low pressure gases. In
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these physical situations the perturbations are dissipated
mainly by free particle flow since these motions are uncor-
related.

V. DISCUSSION AND SUMMARY

We have considered nonlocal transport processes in dilute
neutral monatomic gases when the collision frequency v and
the mean-free path \ are arbitrary with respect to the char-
acteristic frequency w and the characteristic scale length L,
respectively. Because the standard Chapman-Enskog [14]
methods are essentially an asymptotic expansion of the total
distribution function in small parameters, (w/v,\N/L)< 1, it
cannot be used to describe the system for the most general
collisionality regime. The method for solving the kinetic
equation developed in this work consists to transform the
infinite system of equations into a single equation with the
use of the infinite continued fractions. In addition the math-
ematical techniques of the projection operators are used to
ensure the conservative properties of the collision operator.
The resulting transport coefficients are complicated functions
of the temperature and the flow velocity in the Fourier space
(w,k) and converted back to the space-time space they be-
come integrodifferential operators. Two new transport coef-
ficients (ay, ay) that involve only nonlocal effects are calcu-
lated. In contrast to the Grad’s approach, the present method
is not based on a truncation scheme. The whole anisotropic
part of the distribution function is kept with the use of the
continued fractions.

One of the most important results of this work is the pos-
sibility to account for the kinetic effects within the hydrody-
namic equations. Such effects are important for instance in
dilute low pressure gases, where the collision mechanisms
are dominated by the nonlocal effects. As an application of
the present work, the dispersion and the attenuation proper-
ties of sound waves in monatomic neutral gases is studied in
the most general ordering, i.e., for arbitrary values of the
relevant parameters k_];, and kiv, The results obtained are in
very good agreement with experimental data in the whole
collisionality range.

In the present approach we use the kinetic equation lin-
earized for small deviations from the equilibrium. Thus, the
derived transport coefficients are strictly speaking valid only
for the linear case. This is one of the most significant limi-
tations of our theory. Nevertheless, our nonlocal results rep-
resent a significant improvement over the standard (local)
transport coefficients which are independent on the wave
number and the frequency contrary to the nonlocal case. In
addition the linear transport theory has been frequently ap-
plied successfully outside the limits of its validity. In particu-
lar the transport coefficients are habitually computed in the
linear approximation [32] and are used as closure relations in
nonlinear fluid equations. For instance, the perturbative ap-
proach was used by Vidal er al. [33] to study the shock
waves. The results obtained with the fluid equations closed
with nonlocal transport coefficients in the perturbation theory
are in good agreement with the Fokker-Planck simulation.
On the other hand, experimental observations [34] have been

PHYSICAL REVIEW E 74, 041204 (2006)

also successfully explained with the nonlocal heat transport
theory for small amplitude perturbations.

ACKNOWLEDGMENTS

This research was supported by the Comité Mixte
d’Evaluation et de Prospective Algéro-Francais under Project
CMEP 02MDU 548. Two of the authors (A. Bendib and K.
Bendib-Kalache) wish to express deep gratitude to G. May-
nard for his kind hospitality at the LPGP laboratory.

APPENDIX A: CALCULATION OF THE PROJECTION
OPERATORS FOR THE RELAXATION COLLISION
OPERATOR

The purpose of this Appendix is to incorporate in the re-
laxation collision operator (11) the conservative properties of
the collision operator [Egs. (7) and (9)]. In this paper we use
an approach based on the projection operator techniques.
This procedure is standard in nonequilibrium statistical phys-
ics (see for instance Refs. [16,24]).

We expand the distribution function on an “hydrodynamic

part” Pf and a “kinetic part” Qf with the use of the projec-
tion operator P and its complement orthogonal Q, defined by,
P+Q=1 and PQO=0. As a consequence of this splitting, we
can separate the kinetic equation (1) that we express formally
as

L(f) = C(f) (A1)
into a hydrodynamic part (multiplying it by P)
P[C(A)]=0 (A2)
and a kinetic part (multiplying it by Q)
O[L(N)]=C(f). (A3)

The mathematical derivation of the projection operators
for the relaxation collision operator (11) is given explicitly in
Ref. [16]. We just summarize the different stages of this cal-
culation. First the projection operator P is computed from the
isotropic equation (15) using the relation (A2). For this, such
as the perturbed Maxwellian, the hydrodynamic part of dis-
tribution function is linearly expanded as

Pfo(v,k,®) = a exp(- y) + by exp(~y). (A4)

The coefficients a and b are in turn linearly expanded on the

hydrodynamic variables M(l,/2 and M(3)/2 [or equivalently on

ii(k, w) and T(k,w)]. By means of the usual property of the
projection operator, P>=P, we can deduce explicitly the ex-
pression of the projector P

~ I (5
PG =T070) (EM(&” - M?)”)exp(— y)

1 3
_ _M1/2 M3/2> _ , A5

where I'(x) is the Euler function. We can easily check
that P(fy)=f, and that, M*=M}?, MY*=M3?, where
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My, =[5Y"fu(y)dy. Thus, the conservative properties of the
collision operators (7) and (9) are well verified.

Equation (A2) is therefore equivalent to the conservative
relations (7) and (9), since the contributions of the collisions
are removed. The kinetic equation (Al) together with
Eq. (A2) are equivalent to Eq. (A3). Since the collisional
invariance properties (7) and (9) are isotropic equations, it
results that Eq. (A3) is obtained by multiplying Eq. (17) by
Q0=1-P.

To complete our analysis, we should note that to take into
account the invariance properties of the collision operator in
the kinetic equation, an alternative approach based on the
initial value problem was given in Ref. [35] and it yields the
same results.

~ iki|3 [=1[(5
q.= nOTOUt|k| 0{5\/;K[<§Yg/g1_y(s)
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APPENDIX B: EXPRESSIONS OF THE TRANSPORT
COEFFICIENTS AS FUNCTIONS
OF THE GENERALIZED
THERMODYNAMIC FORCES

From Egs. (26)—(29) we can easily deduce the expressions
of the x component of the heat flux and the x-x component of
the stress tensor. Multiplying Eq. (26) by y and y?, integrat-
ing over y, we derive a closed set of equations with respect
to M} and M?. Hence we deduce the explicit expressions of
M, and M7 with respect to the hydrodynamic variables,
ii(k, ), T(k,w), and V(k,®). From (26) we obtain the ex-
pression of heat flux

3(5
/2,1)‘5(5)7(1)}%,1_)/(3)/21)}— —(—l§+ h))}

ikT) 9 [m1(5
Tt TO{ 2T (B, -

,1) - \,3_5(— i£+ 177}

1 5 5
AL L ey RN LR |

nOTO {15|:Y5/21<2 3/21 5/21>_

On the other hand multiplying Eq. (27) by y*?
the component of the stress tensor

~ 8 1
I, =-

16 \/55 sk vV
_— —-n —_—
135 V0 Ok,
64 [2
T 2025
sz 11

16_\/_' , v -
45 no O|k| v, 52,0

ik V

(B1)

5
1.1 0 .0
Y7/2,1<§Y(1)/2,1 - Y2/2,1)} }

, using the explicit expressions of the moments M }, M%, and Eq. (29), we obtain

3 4 1
11 2.,0,0 0 0,0 11 40,0
xx 45AT0’1{Y7/21< YO/21+Y0 )—Y5/2,1<—2Y3/2,1+Y(5)/2,1)} 15A”OT(Y5/21Y3/2,1_Y7/2,1Y1/2,l
{ [Y5/21 Yg/(2)IY5/21 Yg/le3,2])+Y7/21(Y§),(2)1Y%,(2]1 Yl/2IY;}(2),1)]_Y%};,1}

1,1 ,0 1,1 1,1 0,0
0T0|k| { [YS/Z 1 5/2,1Y5/2,1 - Yg/2,1Y7/2,1) - Y7/2 1(Y3/2 1Y5/2 1 Y1/2 1Y7/2 1)] + Y9/2 1}
l‘

(B2)

In Eqi. ~(.B~D and (B2) we have used the notations &=y, =g, A= V21k[v Y35 Y90 - Y98 IR ). Y,
=[oy"Fy F\F5dy and the dimensionless continued fractions
~ (n+1)? - |
F,=|-ié+v+ ——7—=)yF B3
n g [4(n+1)2_1]y n+1 ( )

With the conservative momentum property [Eq. (8)] which corresponds for the relaxation operator, to the condition
M }:O, we calculate the expression of the density 71(k, ) as functions of the temperature and the flow velocity. Substituting
this expression in Egs. (B1) and (B2) we readily obtain the generalized dimensionless transport coefficients defined in Egs.

(30) and (31)
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90 [71(5 40
Kr= “a V2 A\ e
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- Y5, ) 3( £+ 7)
- —=(=ié+v
3/2,1 \5

3 |Jal| (5 3(5 3 o
-Gy/C, 5\/2K|:(EY(3)}(2),1_Y2}(2),1)_5(2 1/(2)1 Yg}g,1>]—\,—5(—l§+v) (B4)
1 5 00 YO
ay lf Y5/21 2Y1/21 3/2,1 3/21 PR 5/21
5 0
lf Y5/21 B 12,1~ 3/21 3/21 3/21 5/21
3 [al|(5 3(5 3 )
- G3/C, 5\/;&[(51/(3)}%1_)/2}2,1 _5(2 172,1 Y3/21>} E(‘lg"'w ) (B5)
41y yoo ooy B Ly yo Y00 _3ye0 Lyoo
ar= lsA(YS/Zl 32,17 7/21 12,1 45X 7/21 12,1t 130 Y5/21 5 gt s G,/Cy, (B6)
16
M_E [Y5/21( 3/21 5/21 Y(5)/21Y3/21)+Y7/21 Y3/21Y3/21 1/21 5/21)] Y7/21
64 2 0 Y90 L1 (0.0
2025 [Y5/21( 5/21Y5/21 %/21Y7/2 )= Y7/21( 3/21Y5/21 1/21 7/2 1)]+Y9/21
16 8 1 3 3
45 —- Yé/£0+45A{Y1’1 ( 2Y0/21+Y(3)/21> Y5/21< 2Y2}3,1+Y2/21)}C3/C17 (B7)

where

aa
N T

9
4 1/21>/A+\’ 2(v-if),

3 |u 3
C2=5\/;<_Y(3)}g,1+2 1/g1)/A’

3

8 3
C=- 45[1/5/21(2)’(3)/(2)1 Y(s) ) Y7/21(2 12,1~

3
Y5/21 2 /21

2 3
il vt (v -

)] /s
#)] /

[1] P. Resibois and M. De Leener, Classical Kinetic Theory of
Fluids (Wiley, New York, 1977); A. N. Gorban and 1. V. Kar-
lin, Phys. Rev. Lett. 77, 282 (1996); 1. V. Karlin and A. N.
Gorban, Ann. Phys. 11, 783 (2002); A. N. Gorban, I. V. Kar-
lin, and A. Y. Zinoviev, Phys. Rep. 396, 197 (2004).

[2] H. Grad, Phys. Fluids 6, 147 (1963).

[3] S. Yip and M. Nelkin, Phys. Rev. 135, A1241 (1964).

[4] P. F. Bhatnagar, E. P. Gross, and M. Krook, Phys. Rev. 94, 511
(1954).

[5] M. Nelkin and S. Ranganathan, Phys. Rev. 164, 222 (1967).

[6] P. M. Furtado, G. F. Mazenko, and S. Yip, Phys. Rev. A 12,
1653 (1975); P. M. Furtado, G. F. Mazenko, and S. Yip, ibid.

13, 1641 (1976); P. M. Furtado, G. F. Mazenko, and S. Yip,
ibid. 14, 869 (1976).
[7]1 I. M. de Schepper and E. G. D. Cohen, Phys. Rev. A 22, 287
(1980).
[8] W. E. Alley, B. J. Alder, and S. Yip, Phys. Rev. A 27, 3174
(1983).
[9] T. R. Kirkpatrick, Phys. Rev. A 32, 3130 (1985).
[10] R. M. Velasco and L. S. Garcia Colin, Phys. Rev. A 44, 4961
(1991).
[11] A. Rangel-Huerta and R. M. Velasco, Physica A 300, 174
(2001).
[12] B. V. Alexeev, Physica A 216, 459 (1995); B. V. Alekseev,

041204-10



GENERALIZED LINEAR TRANSPORT THEORY IN...

Phys. Usp. 43, 601 (2000).

[13] X. Chen, H. Rao, and E. A. Spiegel, Phys. Lett. A 271, 87
(2000); Phys. Rev. E 64, 046308 (2001); X. Chen, H. Rao, and
E. A. Spiegel, ibid. 64, 046309 (2001).

[14] S. Chapman and T. G. Cowling, Mathematical Theory of Non-
Uniform Gases (Cambridge University Press, Cambridge,
1961).

[15] A. Bendib and J. F. Luciani, Phys. Fluids 30, 1353 (1987).

[16] K. Bendib and A. Bendib, Phys. Plasmas 6, 1500 (1999).

[17] M. Abramowitz and 1. A. Stegun, Handbook of Mathematical
Functions (Dover, New York, 1965).

[18] H. Mori, Prog. Theor. Phys. 63, 432 (1965).

[19] K. Nagano, T. Karasudani, and H. Mori, Prog. Theor. Phys.
63, 1904 (1980).

[20] S. Hess, Z. Naturforsch., A: Phys. Sci. 32, 678 (1977).

[21] D. Jou, J. Casas-Vazquez, and G. Lebon, Extended Irreversible
Thermodynamics (Springer, Berlin, 2001).

[22] L. Sirovich and J. K. Thurber, J. Acoust. Soc. Am. 37, 329
(1965).

[23] A. 1. Sukhorukov and P. Stubbe, Phys. Plasmas 2, 4059
(1995).

[24] B. C. Eu and Y. G. Ohr, Phys. Fluids 13, 744 (2001).

PHYSICAL REVIEW E 74, 041204 (2006)

[25]E. A. Spiegel and J. L. Thiffeault, Phys. Fluids 15, 3558
(2003).

[26] W. Marques Jr., J. Acoust. Soc. Am. 106, 3282 (1999).

[27] M. Greenspan, J. Acoust. Soc. Am. 28, 644 (1956).

[28] E. Meyer and G. Sessler, Z. Phys. 149, 15 (1957).

[29] R. Schotter, Phys. Fluids 8, 1163 (1974).

[30] P. Stubbe, J. Plasma Phys. 38, 95 (1987).

[31] A. S. Fernandes and W. Marques Jr., Physica A 332, 29
(2004).

[32] L. Spitzer and R. Hirm, Phys. Rev. 89, 977 (1953); S. I. Bra-
ginskii, in Review of Plasma Physics, edited by M. A. Leon-
tovich (Consultants Bureau, New York, 1965), Vol. 1, p. 205.

[33] F. Vidal, J. P. Matte, M. Casanova, and O. Larroche, Phys.
Plasmas 2, 1412 (1995).

[34] D. S. Montgomery, O. L. Landen, R. P. Drake, K. G. Es-
tabrook, H. A. Baldis, S. H. Batha, K. S. Bradley, and R. J.
Procassini, Phys. Rev. Lett. 73, 2055 (1994).

[35] V. Y. Bychenkov, W. Rozmus, V. T. Tikhonchuk, and A. V.
Brantov, Phys. Rev. Lett. 75, 4405 (1995); A. V. Brantov, V.
Y. Bychenkov, W. Rozmus, and C. E. Capjack, ibid. 93,
125002 (2004).

041204-11



